fbpx
Subscribe
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Advertisment

How the western diet and gut bacteria can lead to scarring, vessel damage in scleroderma

Written by | 3 Oct 2022 | Dermatology

The same metabolite is linked to cardiovascular and metabolic diseases.

A substance produced by gut microorganisms can lead to scarring and blood vessel damage in patients with scleroderma, a new study suggests.

The intestinal microbiome regulates immunity, and its alterations play a role in autoimmune conditions such as scleroderma. However, until now, researchers did not know how alterations in the intestinal microbiome contribute to fibrosis and vascular damage characteristic of scleroderma.

Researchers from Michigan Medicine investigated how a compound generated by the gut microbiome called trimethylamine N-oxide, or TMAO, could cause changes to cellular processes in scleroderma that trigger fibrosis, inflammation and vascular injury.

TMAO is formed in the liver after the gut metabolizes nutrients such as choline and carnitine, which are abundant in the Western diet that is rich in meat. Results published in iScience reveal that the TMAO can reprogram cells to become scar-forming myofibroblasts, which lead to fibrosis and vascular damage. Moreover, the enzyme responsible for the formation of TMAO, called FMO3, is elevated in patients with scleroderma.

“We have uncovered a novel mechanism linking the Western diet, the gut microbiome and some of the devastating effects of scleroderma,” said John Varga, M.D., senior author of the paper and chief of the Division of Rheumatology at University of Michigan Health. “We will next examine whether drugs, or food products like virgin olive oil, can be used to block formation of this compound in the gut to treat fibrosis.”

The research team also included investigators from the Cleveland Clinic and Northwestern University.

Journal Reference:

  1. Seok-Jo Kim, Swarna Bale, Priyanka Verma, Qianqian Wan, Feiyang Ma, Johann E. Gudjonsson, Stanley L. Hazen, Paul W. Harms, Pei-Suen Tsou, Dinesh Khanna, Lam C. Tsoi, Nilaksh Gupta, Karen J. Ho, John Varga. Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiationiScience, 2022; 25 (7): 104669 DOI: 10.1016/j.isci.2022.104669
Newsletter Icon

Subscribe for our mailing list

If you're a healthcare professional you can sign up to our mailing list to receive high quality medical, pharmaceutical and healthcare E-Mails and E-Journals. Get the latest news and information across a broad range of specialities delivered straight to your inbox.

Subscribe

You can unsubscribe at any time using the 'Unsubscribe' link at the bottom of all our E-Mails, E-Journals and publications.